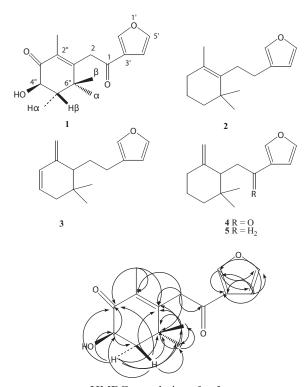
Tetraenol, a Novel Sesquiterpenoid from the Relict Plant *Tetraena mongolica* in China

Zhi-Yu Shao^a, Yun-Hai Zhang^a, Ji-Ning Li^b, Ke-Ji Jiang^a, and Ben-Ke Kuai^{a,*}

- ^a Department of Biochemistry, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200433, P. R. China. Fax: +862165642648. E-mail: bkkuai@fudan.edu.cn
- ^b Western Ecological Environment and Biological Resources Developing United Research Center, Ningxia University, Yinchuan, Ningxia, 750021, P. R.China
- * Author for correspondence and reprint requests
- Z. Naturforsch. **59 c**, 181–183 (2004); received May 23/October 9, 2003

A novel furansesquiterpenoid, tetraenol, was isolated from a relict shrub plant, *Tetraena mongolica*, collected from the northern desert of the Ningxia Hui Autonomous Region. The structure of the new compound was elucidated on the basis of spectroscopic analysis.

Key words: Tetraena mongolica, Furansesquiterpenoid, Tetraenol


Introduction

To search for bioactive compounds from extreme environments in the northwestern parts of China, a few characteristic species of the region were collected and analyzed. *Tetraena mongolica* Maxim. (Zygophyllaceae) is a relict species specifically distributed in the northern dry plateau areas of northern China (mainly the Inner Mongolia and the Ningxia Hui Autonomous Regions). The species is a tough dwarf shrub, which is extremely drought tolerant. Thus far no phytochemical study has been carried out on this shrub. In this study, we collected the aerial parts of *T. mongolica* from the Ningxia Hui Autonomous Region, China. Analysis of its constituents resulted in the characterization of a new furanosesquiterpenoid.

Results and Disscussion

The powdered aerial parts of *Tetraena mongolica* were exhaustively extracted with MeOH and the extract was partitioned between EtOAc and H₂O. The EtOAc-soluble portion was repeatedly chromatographed over silica gel and Sephadex LH-20 column to afford **1**.

Tetraenol (1) was obtained as a white crystalline compound, m.p. 58.5-59 °C, $[a]_D + 108$ ° (c 0.25, MeOH). The molecular formula of 1 was deduced from its HREIMS data (m/z 262.1188 [M]⁺, $C_{15}H_{18}O_4$ requires 262.1205). Its IR absorption at 3448, 1678 cm⁻¹ and ¹³C NMR signals at δ 199.8 (C-3"), 189.0 (C-2), 69.3 (C-4") indicated the presence of two carbonyl groups and a hydroxyl group. Compound 1 containing a 3-carboxyfuranyl group

HMBC correlations for ${\bf 1}$

Fig. 1. Structures of tetraenol (1), pallescensins-1 (2), pallescensins-2 (3), pallescensene (4), penlapallascensin (5) and HMBC correlations for 1.

was revealed in the 1 H NMR spectrum at δ 8.13, 7.49 and 6.80 ppm (Table I) and by fragment ion at m/z 95 (Cambie *et al.*, 1987). The 1 H NMR spectrum also showed three methyl signals (δ 1.73,

0939-5075/2004/0300-0181 \$ 06.00 © 2004 Verlag der Zeitschrift für Naturforschung, Tübingen · http://www.znaturforsch.com · D

Table I. 1 H and 13 C NMR data for compound 1 in CDCl₃ (500 MHz).

Position	$\delta_{ m H}$	$\delta_{ m C}$
1		189.0
2	3.76	41.5
$\frac{2}{2'}$	8.13	147.0
3'	0.13	127.2
4′	6.80	108.7
5'	7.49	144.5
1"	,,,,	157.2
2"		131.1
<u>-</u> 3"		199.8
4"	4.36 (dd, J = 14, 5.8 Hz)	69.3
5"	1.88 $(\beta, t, J = 14 \text{ Hz}),$	44.8
	$2.16 (\alpha, dd, J = 14, 5.8 \text{ Hz})$	
6"	, , , , , , , , , , , , , , , , , , , ,	37.1
2"-CH ₃	1.73	12.3
$6''$ - α - CH_3^a	1.11	29.1
6"-β-CH ₃ ^a	1.25	25.0

^a The data for 6''- α -CH₃ and 6''- β -CH₃ may be reversed.

1.11, 1.25, each 3H, s), a methylene singlet (δ 3.76, s), and an isolated spin system (δ 4.36, dd, J = 14, 5.8 Hz; 2.16, dd, J = 14, 5.8 Hz; 1.88, t, J = 14 Hz). All the above evidence with the aid of 2D NMR (HMQC, HMBC) (Fig. 1) led to structure 1 for compound 1.

To our best knowledge, all other similar compounds reported so far (compounds 2–5) were isolated from marine sponges (Cambie *et al.*, 1987; Cimino *et al.*, 1975; Guella *et al.*, 1983). Some of them exhibited antifeedant activity against fish (Thompson *et al.*, 1982).

Tetraenol was tested for the cytotoxicity against HL-60 human promyelocytic leukemic cells, but showed no significant bioactivity. Other bioassays of tetraenol are currently under way.

Experimental

General

Melting points were determined on a Fisher-Johns micromelting point apparatus and are uncorrected. Optical rotation was determined in MeOH on a Perkin-Elmer 241MC polarimeter. UV spectra were obtained on a Hitachi UV-300

spectrophotometer, and IR spectra were recorded on a Nicolet FT-IR Nexus 470 spectrophotometer with KBr disks. EIMS and HREIMS were obtained with a Finnigan-MAT-95 mass spectrometer. 1D- and 2D-NMR spectra were measured in CDCl₃ with a Bruker Advance 500 NMR spectrometer using TMS as internal standard (δ in ppm, J in Hz).

Plant material

The aerial parts of *Tetraena mongolica* Maxim. were collected from the Ningxia Hui Autonomous Region, China, and the plant was identified by Prof. Yu-Long Ding at Nanjing Forestry University. A voucher specimen is deposited in the Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai.

Extraction and isolation

The aerial parts of *Tetraena mongolica* (dry weight 430 g) were extracted three times with MeOH at room temperature. The residue obtained by removal of the solvent *in vacuo* was partitioned between water and EtOAc. The EtOAc portion (12 g) was fractioned by silica gel (200–300 mesh) chromatography eluted with petroleum ether/EtOAc (from 100:0 to 0:100) to afford several fractions. The fraction (0.6 g) from petroleum ether/EtOAc (80:20 v/v) was purified by repeated silica gel chromatography and molecular filter (Sephadex LH-20) to give 6.2 mg of compound 1.

Tetraenol (1): White crystals. M.p. 58.5–59 °C. – $[\alpha]_D$ + 108°(c 0.25, MeOH). – UV (MeOH): λ_{max} (log ε) = 247 nm (4.03). – HR-EIMS: m/z = 262.1188 [M]+; for C₁₅H₁₈O₄: calcd. 262.1205. – EI-MS: m/z (rel. int) = 262 (12) [M]+, 244 (8) [M-H₂O]+, 218 (15), 190 (20), 175 (18), 95 (100) [C₅H₃O₂]. – IR: ν_{max} (KBr) = 3448, 2927, 1678, 1333, 1155 cm⁻¹. – ¹H and ¹³C NMR: see Table I.

Acknowledgement

The authors are grateful to Prof. Yu-Long Ding, Nanjing Forestry University, Nanjing, P. R. China, for identifying the species.

- Cambie R. C., Craw P. A., Bergquist P. R., and Karuso P. (1987), Chemistry of sponges, II: Pallescensone, a furanosesquiterpenoid from *Dictyodendrilla cavernosa*. J. Nat. Prod. **50**, 948–949.
- nosa. J. Nat. Prod. **50**, 948–949. Cimino G., Stetano S. D., Guerriero A., and Minale L. (1975), Furanosesquiterpenoids in sponges-I: Pallescensin-1, -2 and -3 from *Disidea pallescens*. Tetrahedron Lett. **17**,1417–1420.
- Guella G., Guerriero A., Traldi P., and Pietra F. (1983), Penlanfuran, A new furanoid sesquiterpene from the marine sponge *Dysidea fragilis* of Brittany. Tetrahedron Lett. **24**, 3897–3898.
- dron Lett. **24**, 3897–3898.

 Thompson J. E., Walker R. P., Wratten S. J., and Faulkner D. J. (1982), A chemical defense mechanism for the nudibranch *Cadlina luteomarginata*. Tetrahedron **38**, 1865–1875.